
Advanced Computational Techniques for Laue Di�raction

Analysis�

Zhong Ren,y Rongqin Sheng,z and Stephen J. Wrightx

February 4, 1999

PREPRINT ANL/MCS-P740-0199, JANUARY, 1999, MATHEMATICS AND COMPUTER SCIENCE DIVISION, ARGONNE NA-

TIONAL LABORATORY, ARGONNE, IL 60439, USA.

Abstract

We describe LaueView, a code for processing the measured intensity data in Laue X-ray

di�raction experiments to obtain corrected structure amplitudes for each re
ection that take

account of the various distortion e�ects. The resulting corrected intensity data can then be

used to recover the molecular structure by isomorphous re�nement or by solution of the phase

problem. We describe the key numerical techniques used in LaueView and outline the improve-

ments we made to obtain a new, more e�cient, and parallel version of the code. We conclude

with some computational results obtained on a real data set that illustrate our improvements.

The basic principles of the Laue method are described in an appendix, where we outline the

distortions in the measured intensity data due to e�ects such as blurring, overlap of the spots,

the nonuniform distribution of intensities in the incident X-ray beam, and absorption e�ects of

various types.

1 Introduction

X-ray di�raction analysis of crystals reveals the structure of the molecules that make up the crys-
tal. The problem of determining the structure of large molecules, particularly biomolecules, is an
important one that tests the limits of current computational capabilities.

When X-rays are beamed onto a crystal, they are di�racted to produce a regular array of \spots"
of varying intensity on an area detector. The locations of the spots are determined by the crystal lat-
tice, while their intensities depend on the spatial and temporal average conformation of all molecules
in the crystal and during data collection. In this paper, we focus on the important process of scaling
the measured intensities to obtain the structure factor amplitudes, and thus correcting for various
e�ects embedded in the raw data. We also identify other issues that arise in the processing of the
measured intensity data, such as prediction of the di�raction pattern and determination of the in-
tensity of each spot on the detector by integrating over a �nite area of irregular shape. Processing of

�This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of

the O�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38,

by a DOE Grand Challenge Application Grant, B&R No. KJ-01-01-03-0, and in part by NIH Grant RR07707 to

Keith Mo�at.
yDepartment of Biochemistry and Molecular Biology, The University of Chicago, 920 East 58th Street, Chicago,

IL 60637, USA; renz@cars.uchicago.edu
zMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne,

IL 60439, USA; sheng@mcs.anl.gov
xMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne,

IL 60439, USA; wright@mcs.anl.gov

1



the di�raction data is a challenging task from many viewpoints: modeling and analysis, numerical
techniques, and computational requirements.

We are interested in the Laue method of X-ray di�raction, in which the incident X-ray is not
monochromatic, but rather is made up of a spread of di�erent wavelengths. The Laue technique pro-
duces complex di�raction images containing many spots, some of which overlap or are superimposed.
Monochromatic (single-wavelength) beams are more widely used, and they produce much simpler
di�raction images that are more easily analyzed. Despite the additional complications, however, the
Laue technique is more suitable in situations in which data must be gathered quickly, such as when
our intention is to observe reactions in progress (see, for example, Genick et al. [2]). Another ma-
jor advantage is that Laue di�raction is more suited to synchotron sources (such as the Advanced
Photon Source at Argonne National Laboratory), which naturally produce bright X-rays with a
spread of wavelengths. Mo�att [4] discusses the Laue technique, while Clifton et al. [1] describe the
evaluation of Laue di�raction images.

Figure 1 shows a representative Laue di�raction image collected from a restrictocin crystal.
This crystal is in space group P21 with cell constants a = 50:2�A, b = 82:2�A, and c = 38:0�A; and
� = 100:5�. This crystal has a low mosaic spread and di�racts robustly to a high resolution of
1:5�A. Figure 2 is a Laue image of a thermal stable �-glucosidase in space group P4212 with cell
constants a = b = 220�A and c = 100�A. This crystal has much higher mosaic spread, revealed by the
elongated di�raction spots. A complete static data set requires tens of such images depending on
the crystal space group, resolution and wavelength bandpass of the beamline used. A time-resolved
data set that imaged a reaction in progress would require a data volume equivalent to 100 static
data sets, that is, thousands of raw images. The exposure time available to collect those images is
very short, typically subseconds. On the other hand, the elapsed time of such experiment can range
from hours to days, most of which is spent on detector readout and crystal manipulation. Months
are typically required for crystallographers to process the images acquired from a synchrotron run.
It is this aspect of the experimental process that we discuss in this paper.

To process intensity data from a Laue di�raction experiment, the measured spot intensities must
be adjusted to account for e�ects of variation in intensities of the incident beam as a function of
wavelength, energy absorption by the crystal, polarization of the X-ray beam, temperature e�ects,
and so on. In addition, harmonic overlapping spots must be \deconvoluted" and a speci�c intensity
assigned to each of the component re
ections.

The purpose of the LaueView code, which is the basis of the work described here, is to process
the raw data to obtain a set of corrected, accurate structure factor amplitudes. The code consists
of three phases:

1. Prediction, in which the locations of the di�raction spots on the image and the wavelength of
each re
ection are determined;

2. Integration, in which the shape of the di�raction spots in each region of the image and the
intensity of each spot are determined; and

3. Scaling, in which the measured intensities are corrected to account for the distortion e�ects
discussed above and are reduced to structure factor amplitudes.

LaueView was written by one of the authors of this paper (Zhong Ren) and is described in detail by
Ren and Mo�at elsewhere [8, 9]. Our mission in the current project was to enhance the numerical
and computational techniques used by LaueView to allow it to produce results of the same or better
quality in less computing time. Faster processing of data gathered from real protein crystals will
allow more e�cient use of expensive experimental resources, such as synchotron beam lines, and
more e�ective use of the e�orts of the scientists involved in the experiment.

2



Figure 1: Laue di�raction image collected from a restrictocin crystal

3



Figure 2: Laue image of thermal stable �-glucosidase crystal

4



The focus of our investigations was on the scaling part of the code (phase 3 above), which
accounts for about half the execution time on a typical data set and involves the most challenging
algorithmic issues. The integration portion of the code accounts for most of the remaining processing
time, but it is naturally a parallel operation (di�erent spots can be integrated simultaneously) and
is therefore not a bottleneck on our target parallel platforms. The prediction part of the code takes
relatively little time to execute.

In the Appendix, we describe the basic principles of X-ray di�raction and explain the Laue
method. Although this subject is well known to physicists, we believe that our treatment below
will be easy to understand for a mathematical reader who is not familiar with the topic. Section 2
describes the LaueView code, discussing both the modeling aspects and the major numerical com-
puting issues. Section 3 describes the main computational issues in more detail and focuses on the
improvements we made in these areas. Computational results on an actual data set are given in
Section 4.

2 The LaueView Code

LaueView, the code with which we worked in this study, analyzes the measured intensity data from
the detector and outputs the structure factor amplitudes jF (h; k; `)jfor each set of Miller indices
(h; k; `). This section presents a brief description of LaueView. For more details, see Ren and
Mo�at [9].

The �rst phase of LaueView involves indexing and prediction of the di�raction pattern, using
knowledge of the lattice and symmetry information, and of various geometric parameters of the
actual experiment, such as the location of the beam center and of the crystal-to-detector distance.
Good estimates of the latter parameters are available, and these estimates are re�ned by a least-
squares data-�tting procedure based on comparison of the predicted pattern with the observed
pattern. The main purpose of this phase is to determine the (h; k; `) indices and the wavelength
associated with each spot. Such information is essential in dealing with the spatial-overlap problem
that was mentioned at the end of the appendix.

In the second phase of LaueView, the raw intensities associated with each spot are determined.
Because of the spatial-overlap problem and the irregular shape of most spots, this phase requires
sophisticated modeling and numerical techniques. The shapes of spots in the same area of the
detector tend to be similar, though their intensities may vary widely. LaueView formulates a model
for the intensity distribution in a group of overlapping spots in which a set of shared parameters
(which vary only slowly across the detector space) is combined with one intensity parameter per
spot, as well as a parameter that de�nes the average background intensity. Speci�cally, the intensity
formula for a group of n + 1 overlapping spots that are centered at (xi; yi), i = 0; 1; : : : ; n, with
elliptical orientation 'i, i = 0; 1; : : : ; n, is

P (x; y) =
nX
i=0

pi expf�E(x; y;xi; yi; 'i; a; b; �; dx; dy; sa; ta; sb; tb; ga; gb)g + (1)

px(x� x0) + py(y � y0) + pb;

where

E(x; y; x̂; ŷ; '̂; a; b; �; dx; dy; sa; ta; sb; tb; ga; gb) (2)

=

�
(x� x̂+ dx) cos('̂+ �) + (y � ŷ + dy) sin('̂+ �)

a+ sa(x� x̂) + ta(y � ŷ)

�2ga

5



+

�
�(x� x̂+ dx) sin('̂+ �) + (y � ŷ + dy) cos('̂ + �)

b+ sb(x� x̂) + tb(y � ŷ)

�2gb
:

Note that the coordinates (xi; yi) and orientations 'i, i = 0; 1; : : : ; n are determined in the prediction
phase. (The parameters dx, dy, and � are corrections to xi, yi, and 'i, respectively, that are uniform
within the spot group and are allowed to vary only slowly across the parameter space.)

Each spot group contains 14 shared parameters|a, b, �, dx, dy, sa, ta, sb, tb, ga, gb, px, py,
and pb|as well as the n + 1 intensity parameters pi, i = 0; 1; : : : ; n. To obtain values for the
shared parameters, LaueView chooses a small fraction of re
ections from the detector|re
ections
for which the signal-to-noise ratio is high, spatial overlap is at a minimum, and the spot center is
well predicted. For each spot group in this sample, it performs nonlinear least-squares data �tting of
the predicted intensity (1) to the observed data, in which all n+ 15 parameters are allowed to vary.
The detector space is then partitioned into a number of \bins," and an averaging and smoothing
procedure is applied to the shared parameters. The end result of this process is a \standard pro�le"
for each bin that is de�ned by a set of 13 shared parameters that are shared by all spots within
the bin. (The smoothing procedure ensures that these parameters vary only slowly across the entire
detector space.) Having thus �xed the shared parameters for all re
ections, we now perform linear
least-squares data �tting to obtain values for the intensity parameters pi (i = 0; 1; : : : ; n) and pb
for each spot. (Note that these parameters occur only linearly in the formula (1), hence the need
only for linear least squares.) Finally, the intensity I associated with a particular re
ection at
the point (x̂; ŷ) is obtained by integrating its intensity pro�le P (x; y) by using a standard rule
for numerical integration (Simpson's rule or Gaussian quadrature), and scaling by the intensity
parameter p obtained from the linear-least-squares data �t to that re
ection's spot group.

In the third phase of LaueView|the scaling phase|corrections are applied to the complete
set of measured intensities to account for such e�ects as temperature factors, radiation damage,
general absorption, and, most important, the varying intensity of the incident beam across its
range of wavelengths. The resulting nonlinear least-squares data-�tting problem involves a very
large number of observations (of the order of 105{106 for a protein data set) and a relatively small
number of parameters (typically 100{200). We recount a few details of the scaling operation here
and refer the interested reader to Ren and Mo�at [8, 9] for further information.

We seek a multiplicative scaling factor f to be applied to each measured intensity I, to obtain
a corrected intensity fI. The factor f depends on the Miller indices (h; k; `) and an index i of the
particular observation of this re
ection. In addition, f depends on various parameters whose values
are to be recovered from the data-�tting process. It is composed of a product of 12 factors:

f = fLfP f�fisoSfanisoSfisoBfanisoBfisoDfanisoDfAfUfO; (3)

where each factor represents a correction for a di�erent e�ect. These component factors include the
following:

� A polarization correction fP of the form

fP = 2=(1 + cos2(2�) � sin � cos 2' sin2 2�);

where � and ' are the Bragg angle of re
ection and the polar angle (which are functions of
(h; k; `)) whereas sin � is the X-ray-beam polarization ratio. Here, � is a parameter whose
value is to be determined by the data-�tting process.

� An isotropic scale factor fisoS with the form

fisoS = es;

6



where s is a parameter to be determined by data �tting.

� An anisotropic scale factor fanisoS, which has one of the following two forms, depending on the
desired level of sophistication:

fanisoS = exp(a1h+ a2k + a3`); (4)

or
fanisoS = exp(a1h+ a2k + a3` + a4h

2 + a5k
2 + a6`

2 + a7hk + a8k`+ a9`h); (5)

where (h; k; `) are the Miller indices. The parameters are ai, i = 1; 2; : : :.

� Isotropic and anisotropic temperature factors fisoB and fanisoB, respectively, de�ned by

fisoB = exp(�B sin2 �=�2);

fanisoB = exp(�Bh j�aj
2h2 � Bkj�bj

2k2 �B`j�cj
2`2);

where j�aj, j�bj, and j�cj are the lengths of the reciprocal lattice vectors and � is the wavelength
that produced the re
ection. There are four scalar parameters: B, Bh, Bk, and B`.

The wavelength normalization factor f� is used to correct for the fact that the incident beam
contains a spread of wavelengths, of varying intensity. The curve that relates wavelength to intensity,
known as the � curve, is not known directly|it must be parameterized and reconstructed by �tting
our intensity data and by using our knowledge of the crystal symmetry. Redundant measurements
at di�erent wavelengths and knowledge of the symmetry are instrumental in reconstructing the �
curve. The curve is continuous, but may contain downward spikes at the absorption wavelengths of
a beam-focusing mirror (see Ren and Mo�at [9]).

In LaueView2.5, the � curve is de�ned in terms of the Chebyshev basis functions cos(i arccos z),
i = 1; 2; 3; : : :, for z 2 [�1; 1]. We �rst select the range [�min; �max] of measured frequencies and
de�ne a normalized frequency measure �0 by

�0 =
�� (�max + �min)=2

(�max � �min)=2
: (6)

The � curve (equivalently, the correction factor f�) is de�ned as

f� = 10�10 + exp

"
n�X
i=1

ci (cos(i arccos �
0) � cos(i arccos �0r))

#
; (7)

where �0r 2 [�1; 1] is a reference frequency that �xes the scale of f� (through the relation f� =
1 + 10�10 when �0 = �0r). The degree of the Chebyshev expansion (chosen by the user) is n�, while
ci, i = 1; 2; : : :; n�, are the coe�cients to be determined by �tting the data. The term 10�10 is
introduced to keep f� strictly positive over the range in question.

Parameterization of the � curve was one of the features that we changed in transitioning to
LaueView3.1, as we describe in the next section.

The other factors in (3) that we do not discuss in detail are the Lorentz factor fL, isotropic
and anisotropic radiation damage factors fisoD and fanisoD, a general absorption correction fA, a
detector spatial-nonuniformity corrector fU , and a detector nonlinearity corrector fO.

For practical data sets, LaueView usually does not obtain its best results in a single least-squares
minimization in which all scaling parameters are allowed to vary at once. Rather, a better minimizer
is usually found by performing a sequence of runs, where only a subset of the parameters is allowed

7



to vary in each run while the remainder are �xed. The decision about which parameters to allow
to vary on each run in the sequence is left to the user; intuition from working with large data sets
seems to make for good decisions.

LaueView2.5 is a Fortran 77 code of approximately 50,000 lines. Most of its arithmetic is per-
formed in single precision. A Unix shell script is used to set up each run. The user edits this script
to select the parameters to be varied and those to be �xed on a particular run, to decide the number
of basis functions to be used in the parametrization of the � curve, and to indicate whether the
code should start \cold" or use the approximate solution generated by a previous run as its starting
point. LaueView was developed speci�cally for single-processor SGI workstations. It can be used to
analyze even monochromatic data if the parameters are set appropriately. A fuller description of the
code (from the viewpoint of the application) can be found in the papers of Ren and Mo�at [8, 9].
It was used to produce the structures reported in Ren et al. [10] and Genick et al. [2]

3 Numerical Computing Issues

LaueView uses numerous techniques from scienti�c computing, numerical analysis, and optimization,
both in formulating its model of the di�raction process and in \solving" this model to obtain the
corrected intensities. Chief among these techniques are the following.

� Curve �tting, in which the �-curve is approximated by ec(�), where c(�) is a �nite linear
combination of basis functions.

� Nonlinear least-squares minimization. A large problem of this type is solved during the scal-
ing phase of LaueView to determine the parameters, other than the crystal and molecular
structure, that a�ect the measured intensities. In addition, many small problems of this type
are solved during the integration phase of LaueView to determine the pro�le that de�nes the
shape, orientation, and intensity distribution within each spot.

� Numerical linear algebra, which is used in the solution of the norm-constrained linear least-
squares problem that arises at each iteration of the nonlinear least-squares algorithm.

In these and other areas, we were able to enhance the performance of LaueView considerably.
The previous version, LaueView2.5, evolved into a new version, LaueView3.1. In this section, we
outline the major numerical operations in LaueView, highlighting the improvements we made in the
new version of the code. We also describe how the code was parallelized for execution on an IBM
SP multiprocessor.

3.1 Least-Squares Data Fitting

Data �tting is the process of estimating the parameters in the model of a system by trying to match
a set of observations of the system as closely as possible. Suppose we denote the model by the
function � : IRn� IR! IR, where �(x; t) is the output of the model for a given parameter vector x and
data point (ordinate) t 2 IR. Suppose that we have a set of m observations �i of the physical system
taken at ordinates ti, i = 1; 2; : : : ;m (that is, at the data ordinate t = ti, the observed output of the
system was �i 2 IR). We can form a residual vector r(x) of the di�erences between the model values
and the observations, for a given parameter vector x, as follows:

r(x) = [ri(x)]
i=1
m ; where ri(x) = wi[�(x; ti) � �i]:

8



The wi, i = 1; 2; : : : ;m, are a set of �xed positive weights, chosen to balance the relative importance
of the di�erent observations. They could re
ect our relative con�dence in each observation; those
for which the measurements are known to be more accurate and less \noisy" are sometimes assigned
higher weights.

In least-squares data �tting, we seek the vector x that minimizes a weighted Euclidean norm of
this vector. That is, we solve the optimization problem

min
x

f(x) = 1
2

mX
i=1

r2i (x) =
1
2kr(x)k

2
2: (8)

Various specialized and e�cient algorithms have been developed for solving this problem. Most
of these methods exploit the special structure of the gradient and Hessian (the �rst and second
derivative entities) of the function f(x). The Jacobian of the vector r(x)|the m� n matrix of �rst
partial derivatives|can be written as

J(x) =

�
@ri
@xj

�
i=1;:::;m;j=1;:::;n

:

Elementary calculus then shows that the gradient rf(x) and Hessian r2f(x) are as follows:

rf(x) =
mX
i=1

ri(x)rri(x) = J(x)T r(x); (9a)

r2f(x) = J(x)TJ(x) +
mX
i=1

ri(x)r
2ri(x): (9b)

The algorithm used to solve the least-squares problems that arise both in the integration and in
the scaling phases of LaueView|the Levenberg-Marquardt algorithm|can be viewed as a Newton-
like method with a trust region constraint on the step length, in which the true Hessian r2f is
approximated by the �rst term JTJ in its de�nition above (here and subsequently, for conciseness,
we omit the argument x). In many situations, good steps can be obtained by making this approx-
imation. The second term in (9b) may be dominated by the �rst term JTJ when the residuals ri,
i = 1; 2; : : : ;m, are small at the solution, or when the residual functions ri are nearly linear, or
when cancellation occurs in the summation. Even when the second term is not insigni�cant, the
approximation JTJ has the advantages of being positive semide�nite and of having similar scaling
to the true Hessian.

Our implementation of the Levenberg-Marquardt algorithm in LaueView3.1 follows that of
Mor�e [5]. From our current point x, we obtain a candidate step � 2 IR

n by solving the follow-
ing subproblem:

min
�2IR

n

1
2kr + J�k2 subject to kD�k2 � �; (10)

where the scalar � is known as the trust-region radius, and D is a diagonal scaling matrix D =
diag(d1; d2; : : : ; dn) with positive diagonal elements. Ideally, D should be chosen so that the sensi-
tivity of the function f to perturbations in the values of each scaled variable (Dx)i is roughly the
same. (In LaueView3.1, we set Dii = max((JT J)ii; 1).) It is well known (see, for example, Mor�e
and Sorensen [6]) that the solution of (10) satis�es the equation

[JTJ + 
D2]� = �JT r; (11)

9



or, equivalently,
[D�1JTJD�1 + 
I](D�) = �D�1JT r; (12)

for some value 
 > 0. We compute 
 and the corresponding � by the following procedure. First, we
compute the matrix D�1JTJD�1 explicitly and compute the factorization

D�1JTJD�1 = QSQT ; (13)

where Q = [q1 j q2 j : : : j qn] is orthogonal and S = diag(s1; s2; : : : ; sn), with

s1 � s2 � � � � � sn � 0:

Since
(D�1JT JD�1 + 
I) = Q(S + 
I)QT ;

we can write the solution of (12) explicitly as

D� = �
nX
i=1

qTi D
�1JT r

si + 

qi: (14)

By orthonormality of the vectors q1; q2; : : : ; qn, we have that

kD�k2 =
nX
i=1

(qTi D
�1JT r)2

(si + 
)2
: (15)

If the value 
 = 0 yields a scaled step norm kD�k smaller than �, then we set 
 = 0 in (11) and
compute � from the formula (14) with 
 = 0. Otherwise, the problem of �nding the appropriate

(�) such that kD�k = � is equivalent to �nding a root of the scalar function

R�(
) =
nX
i=1

(qTi D
�1JT r)2

(si + 
)2
��2;

which is usually a monotonically decreasing function of 
. A specialized root �nding algorithm can
be applied to R�(
) to �nd an approximately optimal 
 (see Mor�e [5] for details). Then, recovering
the step � from (14), it computes the ratio � of actual function decrease along this step to the
decrease predicted by the model in (10), that is,

� =
f(x) � f(x + �)

f(x) � 1
2kr(x) + J(x)�k2

: (16)

If this ratio is larger than a small positive number � (� = 10�3, say), the step is accepted, and we
set x+ = x+ �. If � is close to its ideal value of 1 (� > :75, say), and if the trust-region constraint is
binding (that is, kD�k = �), we enlarge the trust region for the next iteration by setting � 2�.
If, on the other hand, � falls below the acceptance threshold �, we reject the step � decrease � (by
a factor of 4, say), and re-solve (10) to obtain a new �.

In the scaling part of LaueView, a typical value ofm for a large data set is 105, while n is typically
of the order of 102. The Jacobian J is large, \long and skinny," and not particularly sparse. Some
implementations of Levenberg-Marquardt (for example, the one described by Mor�e [5]) store J
explicitly, compute a QR factorization, and use the R factor in the subsequent calculations needed
to identify 
(�). In LaueView, J is too large to store explicitly. Instead, LaueView calculates the

10



residual vector r and the Jacobian J row by row (that is, it calculates the quantities ri and rri in
sequence for i = 1; 2; : : : ;m) and accumulates the products JTJ and JT r(x) by using the formulae

JT J =
mX
i=1

rri(rri)
T ; JT r =

mX
i=1

rirri: (17)

Because the evaluations of ri and rri are independent for di�erent values of i, they can be carried
out in parallel. We discuss this point further in Section 3.4.

A variant of the Levenberg-Marquardt algorithm obtained from the book Numerical Recipes [7]
was used in the earlier version of the code, LaueView2.5. This variant does not make use of a trust-
region strategy but rather manipulates the parameter 
 explicitly. This parameter is increased when
the candidate step � is unsatisfactory, and decreased when a successful step is taken. The alternative
trust-region implementation that we described above allows more direct control over the length of
the computed steps. A signi�cant disadvantage of the algorithm described in [7] is that it always
evaluates the �rst derivatives rri whenever the residual values ri are evaluated. If the candidate
iterate is subsequently rejected (when it does not lead to a signi�cant decrease in the function value
over the current iterate), this derivative evaluation is wasted. If, as in LaueView and in many other
applications, the derivative is relatively expensive to calculate, the overall wastage in computational
e�ort may be considerable. In the new version, LaueView3.1, we separated evaluation of the residual
r from evaluation of the Jacobian J , and evaluated the latter only after a point was accepted as the
new iterate.

3.2 Linear Algebra Issues

The most important basic linear algebra calculations in LaueView are accumulation of the sums in
(17) to form JTJ , calculation of the factorization (13), and repeated solution of the system (14) for
�. In LaueView2.5, the terms in (17) were calculated and accumulated in single-precision arithmetic.
This operation appeared to cause di�culties in the Levenverg-Marquardt implementation, because
the code usually terminated by increasing 
 to a very large number while still failing to achieve
descent in the objective function, suggesting that the computed gradient �JT r was not a descent
direction for the objective function f . In LaueView3.1, we modi�ed the code so that each residual
ri and its derivatives were still evaluated in single precision, but the results were transferred to
double-precision variables, and the quantities JTJ and JT r were accumulated and stored in double
precision. On modern computer architectures, double-precision arithmetic is not much (if any) more
expensive than single precision, and the additional storage needed for double-precision variables in
our scheme is not signi�cant.

LaueView2.5 performed a factorization of the matrix JTJ + 
D2 by using either singular value
decomposition or Gaussian elimination, and used the resulting factors to solve (11) for the candidate
step �. LaueView3.1 �nds the decomposition (13) (which is equivalent to the svd for this symmetric
matrix) by using the LAPACK routine DSYEV and obtains the candidate steps from (14). This
revised strategy is slightly more economical because it exploits symmetry in the calculation of
(13) and avoids recalculation of the factorization for each di�erent value of 
. This part of the
computation is considerably less expensive than calculation of the residuals ri and their derivatives.

3.3 Approximating the � Curve with Local Basis Functions

In LaueView2.5, the Chebyshev basis functions cos(i arccos z), i = 1; 2; 3; : : :, were evaluated as
written for many values of z, by using Fortran library functions to evaluate the cos and arccos

11



functions. In a later version (LaueView3.0, which predates LaueView3.1), we replaced this technique
by a more e�cient, well known recurrence relation. Given z 2 [�1; 1], we de�ne

c1 = cos(arccos z) = z; s1 = sin(arccos z) =
p
1� z2;

and recur by using the formulae

ci+1  cic1 � sis1; si+1  
q
1� c2i+1; i = 1; 2; : : : :

Global basis functions such as Chebyshev are not particularly well suited to the representation
of the � curve, since (as noted above) this curve is not particularly smooth and contains downward
spikes at the absorption wavelengths of the focusing mirror. Moreover, such functions give rise to
a Jacobian matrix that is almost fully dense and quite expensive to evaluate. In LaueView3.1, we
replaced them by piecewise-quadratic basis functions with local support de�ned on a uniform mesh
over the user-de�ned range of wavelengths spanned by the data. We then replace the de�nition (7)
of f� by

f� = 10�10 + exp

"
n�X
i=1

ci (pi(�
0) � pi(�

0
r))

#
; (18)

where �0 2 [�1; 1] is the normalized frequency from (6), �0r is the reference frequency, and

pi(�
0) =

8<
:

(�0 � ai�3)2=(6h3) �0 2 [ai�3; ai�2];
1=(4h)� (�0 � ai�3=2)

2=(3h3) �0 2 [ai�2; ai�1];
(�0 � ai)=(6h3) �0 2 [ai�1; ai];

where
h = 2=(n� � 2); ai = �1 + ih; i = �3;�2; � � � ; n�:

3.4 Parallel Implementation

The most expensive part of the calculation in the scaling phase of LaueView is evaluation of the
quantities rT r, JTJ and JT r, at a given parameter vector x. LaueView evaluates these terms in the
manner suggested by the formulae (17). That is, for each value of the index i in turn, it evaluates
r2i , rirri, and rri(rri)

T and accumulates these quantities in the appropriate data structures.
A parallel version of this process proceeds in the obvious way: The indices i = 1; 2; : : : ;m are

\dealt out" to the P available processors, so that each processor receives an approximately equal
number of indices. Processor j forms its own partial sums JT[j]J[j] and JT[j]r[j], where [j] denotes
the subset of indices received by processor j. A global summation operation is performed to obtain
JTJ =

PP
j=1 J

T
[j]J[j]. Parallel evaluation rT r and JT r takes place similarly. The other operations

associated with LaueView, including computation of the candidate Levenberg-Marquardt step, take
place concurrently (and redundantly) on all processors; their relatively low computational cost makes
it not worthwhile to parallelize them.

4 Computational Results

In this section we report on the e�ects of our improvements to LaueView, as measured by its
performance on a real data set from a crystal of photoactive yellow protein, for which structure results
obtained with LaueView2.5 are presented in [2]. The value ofm for this set is approximately 120; 000,

12



Table 1: Parameter Settings for PYP data set

Parameter 1 2 3 4 4S 6
Hot start? (starting set) N Y (1) Y (1) Y (1) N N

Image weighting N Y Y Y Y N
Lorentz fL Y Y Y Y Y Y

Polarization fP N Y Y Y Y N
Wavelength f� Y N N Y Y Y

Isotropic scaling fisoS N Y N Y Y Y
Anisotropic scaling fanisoS (4) N N N N N N
Anisotropic scaling fanisoS (5) N N N N N N

Isotropic scaling fisoB N N Y Y Y Y
Anisotropic scaling fanisoB N N N N N N

while the number of parameters n is small, between about four and seventy in our experiments. We
focus on the improvements in computational performance in this section, rather than the scienti�c
�ndings.

Table 1 indicates the parameter settings for the six runs that we performed on the PYP data
set. Most of the rows correspond to parameters while the columns indicate the runs. The entry Y
or N indicates whether the parameter in question was allowed to vary (Y) or held �xed (N) during
the run in question. The �rst row indicates whether or not a hot start was performed for the run
in question, using as a starting point the output of another run. Runs 1, 4S, and 6 do not use a
hot start, while runs 2, 3, and 4 use the �nal point attained by run 1 as their starting point. For
instance, run 3 of LaueView2.5 uses the output of run 1 of LaueView2.5 as its starting point, while
run4 of LaueView3.1 uses the output of run 1 of LaueView3.1 as its starting point.

We performed experiments on two computational platforms. The �rst was an SGI Onyx2 Reality
Monster running IRIX 6.4, equipped with sixteen MIPS R10000 processors (of which we used just
one) and 4 GB of memory. The second was an 80-node IBM SP in which each node is an RS/6000
workstation equipped with a 120 MHz P2SC chip and 256 MB of memory. On the SGI, the code used
SGI's XFS �le system to do I/O from disk. On the IBM, the parallel input/output �le system was
used. The use of these advanced �le systems reduced the time to completion considerably (without
a�ecting the CPU time) because the code needs to write (and in some cases to read) very large
�les. On the IBM SP, about 100 seconds of CPU time is needed to write an 85 MB output �le that
contains the corrected intensity data, independently of the number of processors used and of the
particular version of LaueView. In the cases of runs 2, 3, and 4, a �le of this size is also read at the
start of the computation to provide \hot start" data.

4.1 Numerical Improvements

Table 2 summarizes the computational performance of the three di�erent versions of LaueView on
the SGI machine. LaueView2.5 is the original version of the code prior to numerical improvements,
LaueView3.1 incorporates all the improvements described above, while LaueView3.0 is identical to
LaueView3.1 except that it continues to use the Chebyshev basis functions of LaueView2.5 instead
of B-spline basis functions. We tried two choices n� = 32 and n� = 64 for the number of local basis
functions in LaueView3.1. In LaueView2.5 and 3.0, 64 Chebyshev basis functions were used in all
runs.

13



T
a
b
le
2
:
C
P
U
T
im
es
(s
ec
on
d
s)
fo
r
D
i�
er
en
t
V
er
si
on
s
of
L
au
eV
ie
w
on
S
G
I
R
ea
li
ty
M
on
st
er

D
a
ta
S
et

L
au
eV
ie
w
2
.5

L
au
eV
ie
w
3.
0

L
au
eV
ie
w
3.
1
(n
�
=
64
)

L
au
eV
ie
w
3.
1
(n
�
=
32
)

ti
m
e
(s
)

o
p
ti
m
al
f

ti
m
e
(s
)

op
ti
m
al
f

ti
m
e
(s
)

op
ti
m
al
f

ti
m
e
(s
)

op
ti
m
al
f

1

20
96

10
45
59
8

41
1

10
42
41
2

25
7

10
06
82
4

19
1

10
17
47
3

2

37
25

4
85
74
6

26
0

49
14
15

37
6

47
86
04

24
7

50
93
50

3

77
00

5
76
93
4

52
9

57
52
37

34
3

56
21
33

38
6

59
13
43

4

fa
il
ed

16
18

46
62
39

69
8

46
20
22

55
9

49
20
59

4S

n
ot
te
st
ed

40
34

46
77
67

23
80

46
14
94

16
17

49
18
01

6

10
84
1

6
33
71
2

25
30

63
97
05

15
25

59
86
17

11
71

61
05
65

14



Table 3: Parallel Performance of LaueView3.1 on IBM-SP Multiprocessor

Data Set Processors Time (s) Speedup Approx. Speedup
(excluding data output)

1 1 551
1 2 377 1.5 1.6
1 4 274 2.0 2.6
6 1 4443
6 2 2522 1.8 1.8
6 4 1334 3.3 3.5
6 8 765 5.8 6.5
6 16 485 9.2 11.3
6 32 351 12.7 17.3

From Table 2, we see that LaueView3.0 obtains similar �nal objective function values to Laue-
View2.5 in considerably less CPU time. On data sets for which both codes produced a result, the
improvement in CPU time is a factor of between about 5 and 14. LaueView3.0 is also considerably
more robust, as demonstrated by its convergence on runs 4 and 4S (yielding the smallest objective
function values in the �rst two columns) where LaueView2.5 failed.

The use of local basis functions (LaueView3.1) results in a further improvement. For Laue-
View3.1, smaller �nal objective values were found in all cases, and CPU requirements decreased
signi�cantly in most cases. Further decreases in CPU time can be noted when n� is decreased to
32, at the cost of slight increases in the optimal objective value.

Another lesson we draw from this table is the usefulness of the strategy of �nding a good min-
imizer by performing a sequence of runs in each of which just a subset of parameters is allowed to
vary. Runs 4 and 4S allow the same parameters to vary, the only di�erence being that run 4 uses
as its starting point the result of run 1, while run 4S starts cold. The combined strategy of run 1
followed by run 4 �nds a slightly smaller objective value in a total run time of half that of run 4S
(411 + 1618 = 2029 seconds vs 4034 seconds).

4.2 Parallelization

Results of the parallel code running on the IBM SP are presented in Table 3. We show results
on runs 1 and 6|a short run and a longer one. LaueView3.1 was used with the number of basis
functions set to 64. In all cases, the results of the computation are independent of the number of
processors used.

Note that the single-processor times are longer than on the SGI platform by a factor of two
to three, since the SGI nodes are more powerful. Since, as mentioned above, we parallelized only
the critical section of the code in which the matrix JTJ and the vector JT r are evaluated and
accumulated, the speedups are considerably less than linear in the number of processors; the non-
parallel parts of the computation (particularly the 100 seconds spent in writing the output �le to
disk) become relatively more signi�cant as the number of processors is increased. However, the wall-
clock time is reduced considerably on multiple processors. The �nal column in Table 3 indicates the
speedup �gure obtained when the 100 seconds spent on writing the output �le is subtracted from the
total CPU time for each run. A more sophisticated parallel code could parallelize this operation by
having each processor write a section of the output to its own �le, while any subsequent run could

15



read these �les in parallel, in an analogous fashion. We feel that the run-time advantages obtained
with our current parallelization technique are su�cient to meet the needs of experimentalists for
faster turnaround time, however.

Acknowledgments

We thank Joe Czyzyk and Madhu Nayakkankuppam for their help in the earlier stages of this project,
both in investigating the scienti�c issues and in working with the LaueView code. We also thank
Keith Mo�at for valuable comments on an earlier draft.

A Outline of X-ray Di�raction

Di�raction of X-rays by a crystal admits a beautiful mathematical explanation in terms of lattice
theory, simple geometry, and other classical tools. Here we brie
y summarize of the background
theory for our study.

A lattice is an in�nite, regular array of points in a space of some given dimension that satis�es the
property that its geometry relative to any point in the array is independent of the particular choice
of point. A crystal is a collection of molecules arranged in a (�nitely truncated) three-dimensional
lattice. That is, if we choose some point in the molecule in question as a reference point, then the
array of these points in space would form a three-dimensional lattice if extended in�nitely in all
directions.

A three-dimensional lattice can be characterized by a set of three basis vectors a, b, and c in IR
3,

where each point in the lattice can be expressed as

xa+ yb+ zc; where x, y, and z are integers. (19)

We can assume that a, b, and c are linearly independent; otherwise, the lattice collapses to one of
lower dimensionality. The parallelepiped whose sides are the vectors a, b, and c is referred to as the
unit cell. The 3� 3 matrix A assembled from these basis vectors, namely,

A = [a : b : c] ;

is nonsingular by our linear independence assumption. Another useful concept is that of the reciprocal
lattice, which is a lattice of the same dimension characterized by three basis vectors �a, �b, and �c with
the following properties:

a � �a = 1; a � �b = 0; a � �c = 0;

b � �a = 0; b � �b = 1; b � �c = 0; (20)

c � �a = 0; c � �b = 0; c � �c = 1;

where \�" denotes the standard (Euclidean) inner product. It is easy to see that �a, �b, and �c are
simply the columns of the matrix A�T , that is,�

�a : �b : �c
�
= A�T :

In Figure 3, we illustrate a lattice together with its basis vectors. This �gure, as well as all
our other illustrations, uses a two-dimensional geometry for simplicity. The extension to three

16



a

b

Figure 3: Two-dimensional lattice generated by basis vectors a and b

dimensions is in all cases easy to envisage. Note in particular that the di�erence vector R between
any two lattice points also has the form (19), that is, it is expressible as

R = xa+ yb + zc; where x, y, and z are integers. (21)

Each molecule in the crystal contains a number of electrons, arranged in a cloud about the atomic
nuclei. When each of these electrons encounters the incident X-ray, the electron is set in motion
and becomes an oscillating dipole|and therefore a source of secondary radiation. We refer to this
process as \scattering" of the X-rays. Interference between the X-rays scattered from the electrons
in the crystal gives rise to the di�raction patterns observed on the detector. Some scattering may
also take place from the nuclei, but its amplitude is usually much smaller and can be neglected for
our purposes.

To describe why certain scattering directions are directions of constructive interference, we make
the (temporary) simplifying assumption that each unit cell contains a single scattering center, which
is in the same location in each cell. These scattering centers themselves make up a lattice that
is characterized by the same basis vectors a, b, and c. We now outline a geometric argument to
identify the scattering directions and X-ray wavelengths for which the beams scattered from all these
centers are in phase, and so yield spots on the detector.

Consider any two scattering centers, as shown in Figure 4. Because both are points in the lattice,
the vector displacement R between them will have the form (21). Suppose that the incident beam
has direction t, which we express in terms of the reciprocal lattice basis by

t = xt�a + yt�b+ zt�c; ktk = 1=�; (22)

for some coe�cients xt, yt, and zt. (The normalization condition ktk = 1=� ensures that each
direction is uniquely speci�ed by the coe�cient triple (xt; yt; zt).) Suppose we investigate a par-
ticular direction of scattering s, also de�ned in terms of the reciprocal basis vectors with the same
normalization condition as in (22) by

s = xs�a+ ys�b+ zs�c; ksk = 1=�: (23)

In Figure 5, we illustrate scattering in the direction s from the two lattice points separated by the
displacement R of the form (21). The important point to note is that the path lengths traversed by
the two beams di�er slightly. The scattered beams will remain in phase provided that the di�erence

in path length is an integer multiple of the wavelength �. From the diagram, we see that the two
di�erent portions of the paths can be measured by dropping perpendiculars from one path to the
other, and simple geometry indicates that these lengths are �R � t and �r � s, respectively. We can
therefore express the di�erence in path length analytically by

�R � (s� t): (24)

17



Figure 4: Di�raction from two points in the lattice (beams di�ract in all directions from all points;
we show just a few directions here)

R

t

s

<R,s>

<R,t>

Figure 5: Beam from direction t di�racted in in direction s from two lattice points separated by R,
showing di�erence in path length

18



Our requirement that this di�erence is an integral multiple of the wavelength can be expressed as

�R � (s� t) = �(xa+ yb+ zc) � [(xs � xt)�a+ (ys � yt)�b+ (zs � zt)�c]

= �x(xs � xt) + �y(ys � yt) + �z(zs � zt)

= �m; for some integer m; (25)

where we used the relations (20) to derive the second equality. Recall that if s is to yield a bright
spot on the detector, the relation (25) must hold for all pairs of points in the lattice, that is for all
integers x, y, and z. This is possible only if the coe�cients of s satisfy the relations

xs � xt = h; ys � yt = k; zs � zt = `; for h, k, and ` integers. (26)

The integer triple (h; k; `), along with the �xed direction t of the incident beam, completely charac-
terizes the direction s. We refer to (h; k; `) as the Miller indices.

To summarize, we conclude from (23) and (26) that the direction s will produce a spot on the
detector if satis�es the following conditions for some set of Miller indices (h; k; `):

s = (xt + h)�a+ (yt + k)�b+ (zt + `)�c; (27a)

k(xt + h)�a + (yt + k)�b+ (zt + `)�ck = 1=�: (27b)

These relations constitute Bragg's law.
We can illustrate these conditions via a device known as an Ewald sphere, a two-dimensional

version of which is plotted in Figure 6. The sphere has radius 1=�, so from the normalization
conditions in (22) and (23), both s and t must lie on its surface. The grid of points represents the
reciprocal lattice centered at the vector t. Geometrically stated, then, condition (27) says that the
vector s is a direction of constructive interference only if it both corresponds to one of the lattice
points in Figure 6 and lies on the surface of the Ewald sphere. The �gure suggests that just a few
directions satisfy this condition. It also clari�es why radiation whose wavelength is of the same order
as the basis vectors a, b, and c is required to produce di�raction. If a longer wavelength � is used,
the Ewald sphere in Figure 6 shrinks. When the sphere becomes smaller than the spacing between
the lattice points, it will not intersect the lattice, thereby producing no directions of constructive
interference.

Laue di�raction images, however, contain many more spots than the description above would
suggest. There appear to be many directions s, each characterized by the Miller indices (h; k; `) in
(27), for which a spots appears on the detector. The reason is that the incident beam consists not
just of a single wavelength �, as assumed in the description above, but a whole range of wavelengths.
Typically, � takes on a range of values between 0:3�A and 2:0�A, depending on the synchrotron source
and its insertion device. Because of this property, we have not just one Ewald sphere as in Figure 6,
but a continuum of spheres of varying radii 1=� and changing origin, all of which have t on their
boundary and make the same tangent with this vector. The situation is depicted in Figure 7,
where the shaded area indicates the space traversed by the continuum of Ewald spheres. Each
reciprocal lattice point lying in this shaded region lies on the boundary of an Ewald sphere for some
� 2 [�min; �max], and so gives rise to a spot on the detector. Comparison of Figures 6 and 7 suggests
that we can expect many more spots in Laue di�raction than in di�raction with a monochromatic
beam.

Having described why spots appear on the detector, we now outline the reasons for the di�erences
in brightness between the spots|di�erences that allow a density map of the electron cloud to be
constructed. Much of this e�ect can be attributed to the fact that scattering does not take place
from isolated scattering centers arranged in a lattice (as we assumed for simplicity above) but rather

19



t

centered at 

reciprocal lattice

t

this     yields a spots

Ewald sphere, radius 1/λ

(-2,2)

(-1,1)

(1,0)

(0,1) (1,1)

(-1,2)

Figure 6: The Ewald sphere, in two dimensions. Direction s yields a spot only if it lies on the sphere
of radius 1=� and is a point on the reciprocal lattice originating at t. Labels on some points show
their Miller indices, which contain just two components in this two-dimensional example.

min

1/λ max

1/λ

t

centered at 

reciprocal lattice

t

Ewald sphere, radius 

(-2,2)

(-1,1)

(1,0)

(0,1) (1,1)

(-1,2)

Ewald sphere, radius 

Figure 7: In Laue di�raction, incident radiation has wavelength in the range [�min; �max], yielding
a continuum of Ewald spheres with radii between 1=�max and 1=�min. Any reciprocal lattice points
lying between these spheres (shaded area) yields a spot on the detector.

20



t

s
r

Figure 8: Scattering in the same direction s from the central reference point in the electron cloud
and another point at a displacement r

from any location in the electron cloud. As a result, the scattered rays will generally not be perfectly
in-phase even along the directions s that satisfy (27), and the intensity of the resulting spot indicates
the deviation from the idealized situation of point di�ractors described earlier.

To explain this e�ect, we �rst consider the case in which the point di�ractor is replaced by a
spherically symmetric electron cloud associated with a single atom. We use Q(jrj) to denote the
electron density function for this cloud, where r indicates the displacement from the atomic nucleus
(the center of the cloud), so that jrj denotes the radial distance. Figure 8 shows scattering of incident
rays with the same incidence and scattering directions t and s from two points in the cloud. One
is scattered from the central reference point, and the other from another point at a displacement r.
By using the same argument as the one that led to (24), we can show that the di�erence in path
length between the two rays is

�r � (s� t);

leading to a phase di�erence of �
2�

�

�
�r � (s� t) = 2�r � (s� t): (28)

By integrating over all displacement vectors r in the cloud and scaling by the density, we deduce
that the amplitude of the radiation scattered by the whole cloud is

f
def
=

Z
S

Q(jrj) exp(2�ir � (s � t))dr; (29)

where S denotes the sphere of integration. The quantity f is known as the atomic scattering factor

for the atom in question. Because of spherical symmetry, we can assume without loss of generality
that

t = (1=�)(1; 0; 0)T ; s = (1=�)(cos 2�; sin 2�; 0)T ;

where 2� is the angle of scattering. (The factor 2 is introduced for convenience.) Elementary
trigonometric relationships then imply that

s� t = 2(sin �=�)(� sin �; cos �; 0)T : (30)

21



We now perform an orthogonal change of variables to r̂, where

r̂ = �r; where � =

2
4 � sin � cos � 0

cos � sin � 0
0 0 �1

3
5 ;

and note that jr̂j = jrj and that the domain of integration S is unchanged. Using (30), we can now
rewrite (29) as

f =

Z
S

Q(jr̂j) exp(2�i(�T
r̂) � (s� t))dr̂

=

Z
S

Q(jr̂j) exp
�
4�i(sin �=�)r̂ ��(� sin �; cos �; 0)T

�
dr̂

=

Z
S

Q(jr̂j) exp
�
4�i(sin �=�)r̂ � (1; 0; 0)T

�
dr̂

=

Z
S

Q(jr̂j) exp (4�i(sin �=�)xr̂) dr̂; (31)

where xr̂ is the component of r̂ along the x axis. It is clear from (31) that f is a function of the
ratio sin �=�; we write f(sin �=�) to emphasize the dependence.

Experiments have determined the atomic scattering factors for many atoms as a function of
sin �=�. For � = 0, the value of f(sin �=�) = f(0) is simply equal to the number of electrons in the
cloud, while the function decreases with as its argument increases.

By taking conjugates in (31), it is easy to see that f(sin �=�) is real. In practice, however,
deviations from symmetry give rise to nonzero imaginary components of f(sin �=�).

We now consider the more interesting case in which the unit cell contains not a single atom but
rather a molecule consisting of N atoms, located at positions

xia + yib+ zic; i = 1; 2; : : : ; N;

where a, b, and c denote the basis vectors for the lattice and xi, yi and zi are the coordinates of the
center of the ith electron cloud relative to some reference point in the unit cell. Scattering takes place
from each atomic cloud, and the e�ects of path length di�erences on the amplitude of scattering in
each direction can be determined by similar arguments to those advanced above. Suppose we are
given a direction t for the incident beam and a scattering direction s that satis�es (27) for some set
of Miller indices (h; k; `) (that is, s is a direction of strong scattering for the lattice structure formed
by the crystal under investigation). We �nd that the phase di�erence between a ray scattered from
the center of the ith electron cloud and one scattered from the molecular reference point is

(2�=�)�(xia + yib+ zic) � (h�a + k�b+ `�c) = 2�(hxi + kyi + `zi): (32)

By applying this phase shift to the atomic scattering factor fi associated with the ith atom, we
obtain a contribution of

fi exp (2�(hxi + kyi + `zi))

to the scattering associated with the molecule, where fi is given by (31). The total scattering in the
direction characterized by (h; k; `) and � is then given by summing the contributions from each of
the atoms, to obtain

F (h; k; `)
def
=

NX
i=1

fi exp (2�(hxi + kyi + `zi)) : (33)

22



This quantity, a Fourier series, is known as the structure factor. In the absence of other factors that
a�ect the scattering, the amplitude of the scattered ray in direction s will be jF (h; k; `)j.

Other factors such as temperature e�ects (which cause the molecules to oscillate around their
mean position in the lattice) and polarization e�ects contribute to the intensity of each spot. The
code LaueView aims to quantify each of these e�ects, so that the amplitudes of the structure factors
can be recovered from the observed amplitude measurements.

Our discussions above about the interference patterns produced by the scattered rays assumed
an in�nite lattice. In �nite lattices, the nonzero intensities can be detected also in directions that
deviate slightly from the directions that satisfy (27). Microcrystals of unit cells fewer than 1000 in
any dimension will give rise to non-Bragg scattering. The energy associated with each spot must
be determined by integrating the intensity over a �nite area on the detector that covers the spot in
question. In typical applications of LaueView, the spots are often streaky because of mosaic spread
of the crystal, and they often overlap, making it necessary to do a \deconvolution" to determine
the intensity associated with each component spot. (The simple alternative approach of deleting
overlapping spots from the data set degrades the quality of the data set considerably.)

Basic descriptions of X-ray di�raction appear in many books; we mention in particular those
of Wilson [11] (from which some of the discussion of this section is drawn) and Glusker and True-
blood [3].

References

[1] I. J. Clifton, E. M. H. Duke, S. Wakatsuki, and Z. Ren. Evaluation of Laue di�raction patterns.
Methods in Enzymology, 277:448{467, 1997.

[2] U. K. Genick, G. E. O. Borgstahl, K. Ng, Z. Ren, C. Pradervand, P. M. Burke, V. Srajer,
T.-Y. Teng, W. Schildkamp, D. E. McRee, K. Mo�att, and E. Getzo�. Structure of a protein
photocycle intermediate by millisecond time-resolved crystallography. Science, 275:1471{1475,
March 1997.

[3] J. P. Glusker and K. N. Trueblood. Crystal Structure Analysis: A Primer. Oxford University
Press, second edition, 1985.

[4] Keith Mo�at. Laue di�raction. Methods in Enzymology, 277:433{447, 1997.

[5] Jorge J. Mor�e. The Levenberg-Marquardt algorithm: Implementation and theory. In G.A.
Watson, editor, Lecture Notes in Mathematics, No. 630{Numerical Analysis, pages 105{116.
Springer-Verlag, 1978.

[6] Jorge J. Mor�e and D.C. Sorensen. Computing a trust region step. SIAM Journal on Scienti�c

and Statistical Computing, 4:553{572, 1983.

[7] W. H. Press, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in Fortran: The Art of

Scienti�c Computing. Cambridge University Press, second edition, 1992.

[8] Zhong Ren and Keith Mo�at. Deconvolution of energy overlaps in Laue di�raction. Journal of
Applied Crystallography, 28:482{493, 1995.

[9] Zhong Ren and Keith Mo�at. Quantitative analysis of synchotron Laue di�raction patterns in
macromolecular crystallography. Journal of Applied Crystallography, 28:461{481, 1995.

23



[10] Zhong Ren, Kingman Ng, Gloria E. O. Borgstahl, Elizabeth D. Getzo�, and Keith Mo�at.
Quantitative analysis of time-resolved Laue di�raction patterns. Journal of Applied Crystallog-

raphy, 29:246{260, 1996.

[11] A. J. C. Wilson. Elements of X-Ray Crystallography. Addison-Wesley, Reading, Mass., 1970.

24


